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ABSTRACT
Background. Phylogeography is based on the principle that species exhibit genetic
structure shaped by biogeographic, ecological or environmental barriers, using both
genetic and geographic components, offering valuable insights into evolutionary
processes. In marine organisms, gene structure is influenced by life histories, geological
events, and oceanographic conditions. The Greater Caribbean (GC), is a biogeographic
region spanning from North Carolina, United States to northern Guyana, comprising
three provinces: Northern, Central and Southern Caribbean. South of the GC is the
Brazilian biogeographic province. Bellow the Amazonas-Orinoco plume the Great
Amazon Reef System is present havingmesophotic reefs situated beneath the freshwater
discharge of the river. Each province is defined by distinct oceanographic conditions
and habitat types, which play a significant role in shaping the evolutionary history of
fish species. Due to its life history traits and the habitat heterogeneity across the GC,
Haemulon aurolineatum, a widespread species found fromChesapeake Bay to Southern
Brazil serves as an excellent model for studying evolutionary history of reef fishes in the
GC region.
Methods. We use three nuclear DNA (nDNA) and one mitochondrial DNA (mtDNA)
markers to study the phylogeographic history of H. aurolineatum. We performed gene
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structure, diversity indexes, haplotype networks, isolation by distance test, divergence
time analysis and species delimitation methods in populations distributed through the
geographic range of the species to understand the relation between the evolutionary
history of the species, geophysical and biological aspects and make some taxonomic
annotations.
Results. All four molecular markers revealed two distinct genetic groups: one pre-
dominantly distributed in the Northern province and the other mainly found in the
Central, Southern Caribbean and Brazilian provinces. The divergence between these
groups is estimated to have occurred around 800,000 years ago (Kya), this is attributed
to the redirection of the Loop Current caused by climatic and oceanographic changes
during the Pleistocene epoch. Our investigation has found genetic homogeneity among
populations in the Central, Southern, and Brazilian provinces, which may be attributed
to the ability of H. aurolineatum to migrate along the mesophotic reefs of the Great
Amazon Reef System within the Amazonas-Orinoco plume region.

Subjects Aquaculture, Fisheries and Fish Science, Biogeography, Genetics, Marine Biology,
Zoology
Keywords Genetic structure, Geographic barrier, Mesophotic reefs, Tomtate grunt,
Greater Caribbean

INTRODUCTION
Phylogeography is based on the idea that most species exhibit a degree of genetic structure
related to biogeographic barriers, allowing inferences about evolutionary processes and
patterns (Avise, 2000; Avise, 2009; Domínguez-Domínguez & Vázquez-Domínguez, 2009).
In marine organisms, genetic structure is commonly influenced by the species’ life history
traits, geological events and physical and environmental oceanographic conditions, such
as biogeographic barriers (Sandoval-Huerta et al., 2019; Delrieu-Trottin et al., 2020; Araujo
et al., 2022). In general terms, biogeographic barriers can be classified as hard and soft
barriers (Cowman & Bellwood, 2013). Hard barriers refer to permanent or difficult-to-
cross barriers; in marine organisms, these barriers can include land masses, such as the
Isthmus of Panama; while soft barriers are permeable, typically caused by oceanographic
and environmental conditions that can be crossed by some species (e.g., sandy gaps, ocean
currents, and the discharge of major rivers) (Bowen et al., 2001; Cowman & Bellwood, 2013;
Araujo et al., 2022).

Within the Western Tropical Atlantic (WTA), there is a region known as the Greater
Caribbean (GC); this region extends from North Carolina in the United States (33◦N)
to northern Guyana (7◦N) (Robertson & Cramer, 2014). Ecological discontinuities
(e.g., differences in habitat) and environmental differences (e.g., transparency, temperature,
salinity) are prevalent in this region and have influenced the evolutionary history
of numerous fish species (Muss et al., 2001; Rocha et al., 2008a; Rocha et al., 2008b;
Jackson et al., 2014; Piñeros & Gutiérrez-Rodríguez, 2017; Loera-Padilla et al., 2021). These
environmental differences lead to the delimitation of three biogeographic provinces by
Robertson & Cramer (2014). The Northern Caribbean province encompasses the entire
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Gulf of Mexico (GOM) and the Atlantic coast of Florida to North Carolina; the Central
Caribbean province includes Central America and all oceanic islands; the Southern
Caribbean province covers the entire continental coast of northern South America up to
the northern border of Guyana. Each of these provinces is characterized by its unique
habitats and environmental conditions such as transparency, temperature, productivity
and salinity (Robertson & Cramer, 2014). Additionally, the Brazilian province which is
within the WTA is characterized by having a variety of habitats such as eutrophic waters
and some oceanic islands with oligotrophic waters, this region extends from the mouth
of the Amazon River to Santa Catarina State (Floeter et al., 2008; Spalding et al., 2007;
Pinacho-Pinacho et al., 2018).

The evolutionary history of fish species from the GC and surrounding regions have been
influenced by different factors. These include the life history of species (e.g., Myripristis
jacobus and Holocentrus adscensionis, Bowen et al., 2006; Acanthurus chirurgus, Rocha et
al., 2002; Epinephelus striatus, Jackson et al., 2014; Sparisoma viride, Loera-Padilla et al.,
2021), geological events (e.g., Acanthurus bahianus and Acanthurus coeruleus, Rocha et al.,
2002; Abudefduf saxatilis, Piñeros & Gutiérrez-Rodríguez, 2017), ocean current circulation
patterns (e.g., Agonostomus monticola, McMahan et al., 2012; Dormitator maculatus,
Galván-Quesada et al., 2016 Awaous banana, McMahan et al., 2021), and the discharge of
major rivers (e.g., Malacoctenus triangulatus, Dias et al., 2019; Selene setapinnis, Haemulon
atlanticus, and Enneanectes altivelis, Araujo et al., 2022).

In the case of the Haemulidae family that encompasses 26 species within 10 genera
in the GC (Robertson et al., 2023), its evolutionary history in the New World seems to
be influenced by vicariant events due to geological changes (e.g., the emergence of the
Isthmus of Panama and the Yucatán Peninsula), physical oceanographic conditions
(e.g., the Amazon-Orinoco plume), as well as intrinsic characteristics of the species
(e.g., multi-habitat species) (Rocha et al., 2008a; Rocha et al., 2008b; Bernardi et al., 2013;
Villegas-Hernández et al., 2014; Palmerín-Serrano et al., 2021). On top of that, secondary
contact of isolated populations due to long dispersal has been documented (Bernal et
al., 2017). Within the Haemulidae family, the species Haemulon aurolineatum (Cuvier,
1830) has been shown genetic structure along its distribution range, despite its generalist
ecological characteristics (Tavera, Acero & Wainwright, 2018; Araujo et al., 2022). It is
found in subtropical and tropical latitudes, ranging from the state of Massachusetts in
the United States, the Gulf of Mexico, the Caribbean Sea, the Guianas, as well as the
north and south coast of Brazil, to the state of Santa Catarina, for more than 22,000 km
of coastline (Lowe-McConnell, 1969; Castro-Aguirre, Pérez & Schmitter-Soto, 1999; Ribeiro
et al., 2019; De Melo et al., 2020; Carvalho-Filho, 2023). It primarily inhabits coastal areas
and is associated with reefs but can also occupy a diverse range of habitats, including
seagrass beds, sand flats, patch reefs, natural hard bottoms, coral reefs, and artificial
reefs over sandy and rough bottoms, at depths ranging from 1 to 140 m (Robertson et
al., 2023). During its juvenile stage, it is also found in mangroves (Courtenay & Sahlman,
1978; Bravo, Eslava & González, 2009), in negative or hypersaline estuaries, such as coastal
marine lagoons, near coral reefs and sandy bottoms with soft corals, where adults live
(Cervigón, 1986; Cervigón, 2012; Tweedley et al., 2019). The species primarily feeds on small
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benthic invertebrates, plankton and algae (Carpenter & De Angelis, 2002). It produces
pelagic eggs and larvae, although the duration of its pelagic larval stage remains unknown.
For Haemulon flavolineatum, duration has been estimated at 15 days (Breder & Rosen,
1966; Robertson et al., 2023). According to this information, we expect to find structured
populations of H. aurolineatum along its distribution range associated with soft barriers
(e.g., sandy gaps, oceanic currents, major river discharges). To test this hypothesis, we
use three nuclear (nDNA) and one mitochondrial (mtDNA) markers to investigate the
phylogeographic patterns of H. aurolineatum and determine: (1) whether the species has
gene structure between biogeographic provinces and (2) the influence of documented
biogeographic barriers and life history traits on the species phylogeographic history.

MATERIALS AND METHODS
Sample collections and data gathering
Sixty-five individuals of Haemulon aurolineatum were collected across the GC, with
an additional 36 sequences downloaded from GenBank (http://www.ncbi.nlm.nih.gov/
genbank/) and BOLDSYSTEMS (http://www.boldsystems.org/). In total, 101 individuals
from 14 locations were included, covering the entire GC and representatives from each
biogeographic province as defined by Robertson & Cramer (2014), as well as the Brazilian
province (Fig. 1; Tables S1, S1.1 & S1.2).

Most samples were obtained with the assistance of fishermen while others were collected
using a pole spear. We took a fin clip from each individual and preserved it in absolute
ethanol at −70 ◦C. Tissue samples and voucher specimens were deposited in the fish
collection at the Universidad Michoacana de San Nicolás de Hidalgo (CPUM) and the
Fish Collection at the Museo de Zoología of the Universidad de Costa Rica. Organism
collection was supported and allowed by the following institutions and permits by Mexican
Commission of Fisheries and Aquaculture under collection permits (CONAPESCA-
PPF/DGOPA-/2013 and CONAPESCA-PPF/DGOPA-262/17); for Costa Rica collection
permits R-SINAC-SE-DT-PI-029-2023 and the Comisión Institucional de Biodiversidad of
the Universidad de Costa Rica (RESOLUCIÓN No. 377); and for Colombia, Universidad
Nacional de Colombia, collection permits 76991-2024 ANLA-Unal-MinAmbiente and
3914-27.

Sequencing, alignment and substitution models
We extracted genomic DNA of the 65 samples collected using the Phenol-Chloroform
protocol (Sambrook, Fritsch & Maniatis, 1989). We amplified fragments of one
mitochondrial and three nuclear DNA markers: Cytochrome oxidase subunit 1 (coxI ),
ribosomal protein S7 (S7), rhodopsin (Rho) and myosin (Myh). PCR reactions were
performed with a final volume of 12.5 µl (Table S2). The amplicons were purified with
Exo-sap enzymes and sent for sequencing to Macrogen Inc., Seoul, South Korea. The
sequences obtained for each molecular marker were visualized, edited, and manually
aligned using MEGA v. 10.2.2 software (Tamura, Stecher & Kumar, 2021). To determine
the best substitution model for each molecular marker, we used the program jModeltest
v2.1.5 (Darriba et al., 2012) with the corrected Akaike Information Criterion (AIC). To
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Figure 1 Collection sites ofHaemulon aurolineatum in the Greater Caribbean. The biogeographic
provinces of Robertson & Cramer (2014) are included in colour (see box). The Amazonian littoral,
Amazonas-Orinoco barrier and the Brazilian province are also included. Sampling sites in the Northern
Caribbean include US, North Carolina (EUC); US, Alabama (EUA); US, Florida (EUF); Mexico, Veracruz
(MXV); Mexico, Campeche (MXC); Mexico, Yucatán (MXY). In the Central Caribbean: Mexico,
Quintana Roo (MXQ); Belize, Riversdale (BLR); Jamaica, Falmouth (JAF); Puerto Rico, San Juan (PRS);
Manzanillo, Costa Rica (CRM). In the Southern Caribbean: Colombia, Santa Marta (COL); Venezuela,
Nueva Esparta (VZN). For the Brazilian province: Brazil, Bahía (BZB). Circles above localities represent
haplotype proportion by haplogroups: green for Hg1 (Haplogroup 1) and blue for Hg2 (Haplogroup 2)
for coxI. Map made on QGIS Development Team (2024). Photo credit: Dr. Omar Domínguez-Domínguez.

Full-size DOI: 10.7717/peerj.19415/fig-1

detect and resolve heterozygous individuals, we used PHASE module from DnaSP v. 6
(Rozas et al., 2017). Analyses were conducted independently for each molecular marker. All
sequences were deposited on GeneBank (Accession numbers: coxI: PQ571864–PQ571924;
S7 : PQ588478–PQ588521; Rho: PQ588522–PQ588559; Myh: PQ588560–PQ588601). The
coxI mitochondrial marker was chosen due to the known variability in other population
studies (Torres-Hernández et al., 2022; Bernal-Hernández et al., 2024; Torres-García et al.,
2024) and the possibility to find a high number of sequences in the public repositories
(e.g., Brazilian samples). The nuclear markers were chosen to try to have a high arrange
of mutation rate, and the possibility to detect both, recent and ancestral events, as have
been show in previous studies (Gaither et al., 2011; Sandoval-Huerta et al., 2019; Palmerín-
Serrano et al., 2021).
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Genetic diversity and haplotype networks
We calculated the number of haplotypes (Hn), haplotypic diversity (h), nucleotide
diversity (π), and the number of polymorphic sites (S) of mtDNA and nDNA by
biogeographic province in ARLEQUIN v. 3.5 (Excoffier & Lischer, 2010). In order to analyze
the genealogical relationships between haplotypes and their geographical correspondence,
we constructed a statistical parsimony network for each molecular marker using the
software PopArt with the Median–Joining algorithm (Bandelt, Forster & Röhl, 1999).

Genetic structure and divergence time estimates
We conducted an analysis ofmolecular variance (AMOVA) to assess genetic differentiation.
The groups were tested as follows: (1) a panmictic population (single genetic group), (2)
by GC biogeographic provinces (Northern vs. Central vs. Southern Caribbean) (Robertson
& Cramer, 2014) plus the Brazilian province (for coxI only), (3) the Northern Caribbean
vs. Central, Southern Caribbean and Brazilian provinces (SCB-Provinces), and (4) between
haplogroups obtained from the statistical parsimony haplotype network. Furthermore, we
estimated population genetic differentiation by computing pairwise Fst values (1) among
biogeographic provinces, (2) the Northern Caribbean compared to Central, Southern
Caribbean and Brazilian province) and (3) between haplogroups obtained from the
statistical parsimony haplotype network. Both analyses were performed using ARLEQUIN
v. 3.5 (Excoffier & Lischer, 2010), with each analysis including 1,000 permutations to
estimate significance. We also calculated uncorrected p-Distances (p-D) for all markers
based on the same grouping scheme as the Fst values using MEGA v. 10.2.2 software
(Tamura, Stecher & Kumar, 2021).

Divergence times were estimated in BEAST v. 1.8.4 software (Drummond & Rambaut,
2007) through a Bayesian inference phylogenetic reconstruction. To calibrate themolecular
clock, we used seven species from the closely related genus Anisotremus, and four from
Haemulon (Table S3) (Tavera, Acero & Wainwright, 2018). Due to the availability of
gene markers in the outgroups, only the mtDNA marker coxI and nDNA marker S7
were included in the analysis. Fossil ages were sourced from the Paleobiology Database
(https://paleobiodb.org/). The first calibration point was based on the split between
Haemulon and Anisotremus estimated at 23–16 Mya (Million years ago) (mean: 0.2,
SD: 0.8 offset: 16; calibration: Haemulidae) (Aguilera & De Aguilera, 2004). The second
calibration was in the crown-group ofHaemulon in the lateMiocene: 11.6–7.24Mya (mean:
0.9, SD: 0.4 offset: 7.24; calibration:Haemulon spp.) as reported byGillette (1984). The third
calibration point was in the crown-group of Anisotremus, with Pleistocene ages 5.33–3.6
Mya (mean: 0.2, SD: 0.1 offset: 3.6; calibration: Anisotremus spp.), as reported by Fitch &
Lavenberg (1983). The analyses were run using an uncorrelated relaxed clock model with a
lognormal Yule speciation process. Three independent MCMC runs were performed, each
consisting of 10 million generations, sampling every 1,000 generations. Convergence of the
chains was assessed by discarding the first 10% of generations as burn-in, using Tracer v
1.7 (Rambaut, Drummond & Suchard, 2018). Estimated parameters from the independent
runs were pooled using the LogCombiner module in BEAST, and the maximum clade
credibility tree was generated with the TreeAnnotator module. The analyses were executed
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on the CIPRES Science Gateway (Miller, Pfeiffer & Schwartz, 2010). Finally, the tree was
visualized and edited on FigTree v 1.4.2 (Rambaut, 2014).

Isolation by distance
We estimated patterns of isolation by distance (IBD) using coxI gene throughout a Mantel
test (Mantel, 1967) with 10,000 permutations in the ‘‘vegan’’ library on R (R Studio Team,
2022; Oksanen et al., 2022). To perform the correlation between genetic and geographic
distance, we use linearized Fst values (Fst /1-Fst ) (Rousset, 1997) as genetic distances,
whereas the geographic distances between localities were obtained using the package
‘‘fossil’’ on R (Vavrek, 2011).

Species delimitation
We conducted two species delimitation analyses using four molecular markers. First, we
inferred a species tree using BEAST v1.8.4 (Drummond, Rambaut & Suchard, 2016). For
this approach, we designated Haemulon vittatum as the outgroup species (Tavera, Acero
& Wainwright, 2018). The analysis employed an uncorrelated relaxed clock model with a
normal Yule speciation process. The Markov chain Monte Carlo (MCMC) runs consisted
of 30 million generations, sampling every 3,000 generations. To ensure convergence, we
discarded the first 10% of generations as burn-in and assessed convergence using Tracer
v1.7 (Rambaut, Drummond & Suchard, 2018). Second, we performed a Species Tree and
Classification Estimation (STACEY v1.3.1; Jones, 2017) analysis using the STACEY template
in BEAST v2.6 (Bouckaert et al., 2019). STACEY infers a ‘‘Species or Minimal Clusters’’
(SMC) tree under the birth-death-collapse tree prior, which does not require a guide tree
(Petzold & Hassanin, 2020). This analysis was conducted using a strict clock model and a
birth-death-collapse tree prior with the following parameters: CollapseHeight = 0.0001;
CollapseWeight = 0.5; BirthDiffRate = 100; RelativeDeathRate = 0.5; OriginHeight =
100. The MCMC runs for this analysis also consisted of 30 million generations, with results
saved every 30,000 generations. Convergence and ESS values were evaluated using Tracer
v1.7 (Rambaut, Drummond & Suchard, 2018). The resulting files were processed in the
Species Delimitation Analyser with a collapse height of 0.0001 and a similarity cut-off of
1.0, following the exclusion of the first 10% of generations as burn-in.

RESULTS
Sequences and genetic diversity
For the mitochondrial gene coxI we obtained 97 sequences with a length of 628 base pairs
(bp), exhibiting 43 polymorphic sites and 39 haplotypes. For S7, we obtained 44 sequences
with a length of 387 bp, showing 46 polymorphic sites and 34 haplotypes. Regarding Rho,
dataset contained 38 sequences with a length of 806 bp, featuring 17 polymorphic sites and
21 haplotypes. The dataset for theMyh gene consisted of 42 sequences with a length of 692
bp, displaying 34 polymorphic sites and 25 haplotypes. Samples from Brazilian province
for the nDNAmarkers were not included in this study. The coxI gene exhibited the highest
values of nucleotide diversity and haplotypic diversity in the Central Caribbean region
and the lowest in the Brazilian province. The nuclear gene S7 showed the highest values
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Table 1 Mitochondrial and nuclear diversity indices by biogeographic provinces.

Providence N Hn h π S

NC 33 18 0.8400 0.00571 29
CC 33 17 0.9010 0.00939 24
SC 13 7 0.7310 0.00670 22

CoxI

BP 18 9 0.7060 0.00257 12
NC 12 9 0.9390 0.00924 14
CC 12 9 0.9550 0.01429 13S7

SC 20 16 0.9790 0.01590 19
NC 12 2 0.1670 0.00041 2
CC 6 11 0.8320 0.00543 12Rho

SC 20 8 0.8530 0.00528 9
NC 12 8 0.8480 0.00490 14
CC 8 5 0.8930 0.00484 8Myh

SC 22 12 0.9350 0.00366 12

Notes.
Number of analysed individuals (N), number of haplotypes (Hn), haplotypic (h) and nucleotide diversity (π), and number of
polymorphic sites (S). Biogeographic province as defined by Robertson & Cramer (2014): NC, Northern Caribbean province;
CC, Central Caribbean province; SC, Southern Caribbean province and BP, Brazilian province.

of nucleotide diversity and haplotypic diversity in the Southern Caribbean region, and
the lowest in the Northern Caribbean. In Rho, the highest values of nucleotide diversity
and haplotypic diversity were found in the Southern Caribbean region, and the lowest in
the Northern Caribbean. Lastly, in the Myh the highest haplotypic diversity was found
in Southern Caribbean, the highest nucleotide diversity in Northern Caribbean and the
lowest in the Central Caribbean (Table 1). We acknowledge that the absence of nDNA
markers for the Brazilian province could introduce bias into our results. However, we
believe the observed pattern of genetic homogeneity in the coxI Central and Southern
Caribbean, as well as in the Brazilian province, is highly likely to persist even if nDNA
markers are included in the analyses. This conclusion is supported by our own findings,
where similar patterns of variation were observed in both mtDNA and nDNA data across
the broader sampling area and provinces. Additionally, since mtDNA is known to exhibit
greater variability than nDNA (see Vawter & Brown, 1986; Allio et al., 2017), we expect this
pattern to hold. Nevertheless, we strongly recommend including nDNA markers in future
studies to enhance the robustness of the findings.

Haplotype networks
The coxI haplotype network shows two haplogroups (Hg1 and Hg2) separated by eight
mutation steps. Although Hg1 was composed of most individuals from the Northern
Caribbean, also included five individuals from Central and one from Southern Caribbean,
most of them showing peripheral position separated by three mutation steps from the
nearest Northern Caribbean sample. Hg2 is composed by most of the individuals from
the CSB-provinces, as well as two from Florida (St. Lucie County) and one from Yucatán
(Sisal), mainly mixed with haplotypes of central province. The nDNA S7 marker shows
more variation, with almost each sample forming their own haplotype without mixing, a
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Figure 2 Median-Joining haplotype networks for the four genetic markers analysed. (A) Mitochon-
drial marker coxI, and nuclear markers (B) S7, (C) Myh, and (D) Rho. Each circle in the network rep-
resents a distinct haplotype, and the circle size is proportional to the number of individuals sharing that
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individuals from the Northern Caribbean, is shown in blue, while Haplogroup 2 (Hg2), including individ-
uals from the Southern and Central Caribbean as well as the Brazilian province, is represented in orange.

Full-size DOI: 10.7717/peerj.19415/fig-2

somewhat geographic segregation is observed for the Northern Caribbean. The nDNA Rho
andMyh genes show the haplotypes from the Northern Caribbean mostly segregated from
those of the Southern and Central Caribbean samples (Fig. 2).

Genetic structure and divergence time estimates
The results of theAMOVA for a single population found a high and significantφST , rejecting
the null hypothesis of panmixia. The haplogroup arrangement (Hg1 vs. Hg2) maximized
variation among groups for the coxI gene (Table 2). In contrast, for the nuclear gene S7 the
highest variation was observed within populations. While Rho found the highest variation
among populations within groups. Finally, for Myh, the variation was maximized within
populations. Fst values as well as p-D show the same pattern as the haplotype networks in
all molecular markers, where the Northern Caribbean is well differentiated in relation to
the CSB-provinces (Fst = 0.58 to 0.80 (p< 0.05); p-D = 0.42 to 1.89; Table 3). The split
of both, the Northern Caribbean and CSB-Provinces H. aurolineatum lineages was dated
ca. 0.8 Mya (95% HPD: 0.35−1.38 Mya) (Fig. 3).
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Table 2 Hierarchical analysis of molecular variance (AMOVA), using mtDNA and nDNA sequences.

Genetic groups analized Source of variation Variation (%) Fixation index P value

Among groups 76.00 φST : 0.75996 0.00000Panmictic population
(single genetic group) Within populations 24.00

Among groups 27.52 φCT : 0.27525 0.09384
Among populations within groups 49.73 φSC : 0.68619 0.00000Northern vs. Central vs.

Southern vs. Brazilian
Within populations 22.74 φST : 0.77256 0.00000
Among groups 59.06 φCT : 0.59057 0.00000
Among populations within groups 1.95 φSC : 0.04755 0.07331Northern vs Central +

Southern + Brazilian
Within populations 39.00 φST : 0.61004 0.00000
Among groups 79.17 φCT : 0.79168 0.00000
Among populations within groups 5.56 φSC : 0.26679 0.00000

coxI

Haplogroup 1 vsHap-
logroup 2

Within populations 15.27 φST : 0.84726 0.00000
Among groups 29.11 φST : 0.29108 0.00000Panmictic population

(single genetic group) Within populations 70.89
Among groups 14.83 φCT : 0.14830 0.15445
Among populations within groups 16.51 φSC : 0.19383 0.00391Northern vs. Central vs.

Southern
Within populations 68.66 φST : 0.31339 0.00000
Among groups 25.27 φCT : 0.25888 0.03812
Among populations within groups 12.67 φSC : 0.17102 0.00098Northern vs. Central +

Southern
Within populations 61.44 φST : 0.38563 0.00000
Among groups 25.89 φCT : 0.25273 0.04203
Among populations within groups 11.62 φSC : 0.15546 0.00098

S7

Hg1 vs.Hg2

Within populations 63.11 φST : 0.36890 0.00000z
Among groups 89.64 φST : 0.89640 0.00000Panmictic population

(single genetic group) Within populations 10.36
Among groups 16.92 φCT : 0.16920 0.66178
Among populations within groups 106.06 φSC : 0.90707 0.00000Northern vs. Central vs.

Southern
Within populations 10.87 φST : 0.89135 0.00000
Among groups 9.15 φCT : 0.09146 0.23851
Among populations within groups 80.96 φSC : 0.89109 0.00000Northern vs. Central +

Southern
Within populations 9.89 φST : 0.90105 0.00000
Among groups 41.11 φCT : 0.41107 0.05000
Among populations within groups 50.19 φSC : 0.85227 0.00000

Rho

Hg1 vs.Hg2

Within populations 8.70 φST : 0.91300 0.00000
Among groups 27.96 φST : 0.27958 0.00000Panmictic population

(single genetic group) Within populations 72.04
Among groups 8.84 φCT : 0.08842 0.72630
Among populations within groups 35.76 φSC : 0.32856 0.00391Northern vs. Central vs.

Southern
Within populations 73.08 φST : 0.26920 0.00000
Among groups 9.44 φCT : 0.09435 0.13392
Among populations within groups 21.55 φSC : 0.23798 0.00587Northern vs. Central +

Southern
Within populations 69.01 φST : 0.30988 0.00000
Among groups 12.32 φCT : 0.12323 0.35093
Among populations within groups 20.17 φSC : 0.23006 0.01857

Myh

Hg1 vs.Hg2

Within populations 67.51 φST : 0.32494 0.00000
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Table 3 Fst values and p-distances.

Provinces of the GC coxI S7 Rho Myh

F ST p-D F ST p-D F ST p-D F ST p-D

Northern-Central 0.516* 1.543 0.183* 1.716 0.461* 1.321 0.112 0.445
Northern-Southern 0.655* 1.663 0.216* 1.701 0.228* 1.200 0.192* 0.436
Central-Southern 0.001 0.796 0.039 0.394 0.179 0.518 0.005 0.330
Northern-Brazilian 0.729* 1.616 n/d n/d n/d n/d n/d n/d
Central-Brazilian 0.078 0.650 n/d n/d n/d n/d n/d n/d
Southern-Brazilian 0.023 0.417 n/d n/d n/d n/d n/d n/d
Northern-Central & Southern
(& Brazilian for coxI )

0.602* 1.619 0.301* 0.509 0.390* 0.505 0.199* 0.438

HG1–HG2 0.803* 1.895 0.288* 0.582 0.583* 0.509 0.166* 0.418

Notes.
Significant Fst values represented with asterisk* (α = 0.008 for coxI differences between provinces; α = 0.05 for all markers in NP-CP vs. SP-BP and HG1-HG2 comparisons;
α= 0.016 for all ANDnmolecular markers in provincial comparisons; alpha was calculated with Bonferroni correction). p-distance (p-D) values are presented as percentage (%).
n/d no data available for the nuclear markers.

H. scudderii

H. atlanticus

H. plumierii

H. aurolineatum

A. interruptus

A. surinamensis

A. davidsonii

A. scapularis

A. taeniatus

A. virginicus

A. caesius

Haemulon spp.
Anisotremus spp.
Holocene
Calibration points

1.3 1.0 0.51.5 Mya0.30.8

Northern

Central
Southern
Brazilian

0.01
H

H

PLEISTOCENE

1

1

0.8

0.9

0.9

0.9

0.9

1

0.99
0.8
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ity from the STACEY analysis. The blue clade represents the Northern Caribbean lineage, while the gold
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Isolation by distance
Mantel test shows a non-significant correlation between genetic and geographic distances
(r = 0.0413; P = 0.3551).
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Species delimitation
The species tree supported the separation of the Northern Caribbean from the Central
and Southern Caribbean clusters with a posterior probability of one (Fig. 3). The results
from STACEY for the global test, where we defined three minimal clusters (Northern vs.
Central and Southern Caribbean vs. Outgroup), according to the hypothesis obtained in
both phylogenetic reconstructions, showed high support (pp = 0.99).

DISCUSSION
Ourmulti-locus study found two evolutionarily independent lineages inside themarine fish
H. aurolineatum along its geographic distribution, corroborating previous studies (Tavera
et al., 2012; Tavera, Acero & Wainwright, 2018; Tavera & Wainwright, 2019; Araujo et al.,
2022). The evolutionary history of the species seems to be influenced by climatic oscillation
during Pleistocene age and ecological complexities over the region.

Divergence of the two genetic groups
All the analyses conducted here reveal two well-supported genetic groups, one mainly
distributed in the Northern Caribbean and the other in the CSB-Provinces, with genetic
p-D of 1.89% and divergent event calculated to occur at 0.8 Mya. Nevertheless, previous
studies inHaemulidae family provided older estimates (Tavera, Acero & Wainwright, 2018),
placing the split between the two H. aurolineatum lineages at 2 Mya. The discrepancies
between estimations could be associated with the used calibration points. Tavera, Acero &
Wainwright (2018) used fossils of the stem lineage of Siganidae and Scatophagidae with an
estimation date between 63.9 to 55.8 Mya, a stem lineage of the subfamily Acanthurinae
with an estimation date between 57.3 to 50 Mya and a stem lineage of Luvaridae and
Acanthuridae with an estimation date between 63.9 to 55.8 Mya. These three calibration
points are concentrated in the Eocene-Paleocene epoch, which may bias the time estimates
towards a more distant past (see: Magallón, 2010; Molak et al., 2012; Duchêne, Lanfear
& Ho, 2014). On the contrary, in the present study we used three Haemulidae fossils,
including the stem group of Haemulon and Anisotremus with dates between 23 to 16 Mya,
the crown group of Anisotremus with dates between 5.3 to 3.6 Mya and the crown group
of Haemulon with dates between 11.6 to 7.2 Mya (Palmerín-Serrano et al., 2021). These
calibration points are better distributed over time, covering a window from 23 to 3.6 Mya.
This broader time span in the calibration points enhances the accuracy of dating recent
divergence events and helps mitigate temporal biases toward older estimates (Parham et
al., 2012; Molak et al., 2012; Duchêne, Lanfear & Ho, 2014), as observed in the case of the
two distinct genetic populations of H. aurolineatum. Consequently, we consider the dating
findings in the present study to be more accurate than those reported by Tavera, Acero &
Wainwright (2018).

Since IBDanalysis indicates a non-significant correlation between genetic and geographic
distance, the results suggest that the divergent event must be influenced by geological,
oceanographical or biological-ecological barrier. Other fish species also show the isolation
between Northern Caribbean (GOM) and CSB-Provinces samples, but they vary in
divergences time, being calculated at 0.19 Mya in Dormitator maculatus (Galván-Quesada
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et al., 2016); or in genetic p-D, being 1.86% in Awaous banana (McMahan et al., 2021),
to 5.3% in Gobiomorus dormitor (Guimarães Costa et al., 2017). In most of these studies,
the genetic break was attributed to the effect of the Loop Current acting as a soft barrier.
Loop Current is a warm water current that originates at the Yucatán Channel, flows
through the strait between the Yucatán Peninsula and Cuba, loops back, and ultimately
pass through the strait between Florida and Cuba (Vukovich, 1988; Oey, Lee & Schmitz
Jr, 2003). This current could transport larvae from the Caribbean through the Yucatan
Channel to the East, preventing its entrance to the GOM (Richards et al., 1993). This
hypothesis is also supported by most of the samples (two of three) from the Atlantic side of
Florida, which belong to the CSB-Populations haplogroup (Hg2), instead of the Northern
Haplogroup (Hg1). Our divergence estimation (800,000 years ago) is in accordance with
the dates estimated for the Günz Glaciation occurred between 850,000 to 600,000 years
ago (Corrêa, 2021). The drastic climatic oscillations between repeated cycles of glaciation
during the Pleistocene (Corrêa, 2021) dropped the sea level between 60 to 120 m lower
than today, and coastlines extended horizontally between 10 and 100 kilometers, leading
to the fragmentation and alteration of marine habitats (Jackson, 1992; Greenstein, Curran
& Pandolfi, 1998; Ludt & Rocha, 2015; Diester-Haass, Billups & Lear, 2018).

The combination of the sea level drop (exposing large areas of the Florida and Yucatán
peninsulas), with the dramatic sea surface cooling in the Gulf of Mexico (GOM), the
prevailing north-easterly winds over the Caribbean, the strong outflow of the Mississippi
River and the topography of the Yucatán Peninsula, restricted the Loop Current entry
into the GOM. Instead, the current veered directly towards the Florida Straits and Cuba
(Schmidt, Spero & Lea, 2004; Nürenberg et al., 2008; Arellano-Torres, Amezcua-Montiel &
Casas-Ortiz, 2023) (Fig. 4). As a result, the GOM became isolated, leading to the genetic
separation of two evolutionary lineages inH. aurolineatum. Nevertheless, a comprehensive
explanation of genetic differentiation between GOM and CSB-Provinces populations
must consider not only their origins but also their maintenance under present conditions.
Moreover, if we take into consideration the mixture of haplotypes in the Caribbean of
Mexico and Belize as well as Florida, high rates of gene flow over a few generations
can eliminate genetic differentiation between populations. Therefore, it appears that the
oceanographic barriers to dispersal or selection against migrants (or hybrids) are likely
acting to maintain geographic variation currently.

Homogeneity of the Central, Southern and Brazilian provinces
All our analyses across all genes show a pattern of genetic homogeneity in H. aurolineatum
among the Central, Southern Caribbean and Brazilian provinces. Similar genetic
homogeneity between the Central and Southern Caribbean provinces has been reported
in other species, such as Abudefduf saxatilis, Sparisoma viride, Dormitator maculatus,
Agonostomus monticola, and Awaous banana (McMahan et al., 2012; McMahan et al.,
2021; Galván-Quesada et al., 2016; Piñeros & Gutiérrez-Rodríguez, 2017; Loera-Padilla
et al., 2021). However, genetic homogeneity between the Southern-Central Caribbean
and Brazilian provinces is an uncommon pattern in reef-dwelling fishes. Typically,
this region displays genetic breaks, with the emergence of sister species pairs or
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Figure 4 Loop current configuration: actual and hypothetical during glacial periods. Loop Current
configuration: actual (black arrows) and hypothetical during glacial periods (orange arrows). Land exten-
sions during maximum glaciation (green) and minimum glaciation (yellow) (map made on QGIS Devel-
opment Team, 2024 with information from Ludt & Rocha (2015); Corrêa (2021)).

Full-size DOI: 10.7717/peerj.19415/fig-4

populations among shallow-water reef fishes in the WTA, such as Ophioblennius macclurei
and Ophioblennius trinitatis (Muss et al., 2001), Acanthurus bahanius (Rocha et al.,
2002), Sparisoma frondosum—Sparisoma griseorubra (Robertson et al., 2006), Halichoeres
radiatus—Halichoeres brasiliensis, Sparisoma axillare—Sparisoma rubripinne (Rocha et
al., 2008a; Rocha et al., 2008b), Haemulon atlanticus, Coryphoptetus thrix, Enneanectes
altivelis (Araujo et al., 2022), Centropomus irae (Carvalho-Filho et al., 2019)—Centropomus
undecimalis (Malcher et al., 2023), among others. This commonly observed pattern of
genetic differentiation is often attributed to the Amazon-Orinoco plume barrier, which
assumed its current configuration during the early Pleistocene (∼2.4 Mya). Over time,
the permeability of this barrier fluctuated with sea-level changes: it became less permeable
during glacial periods, preventing species from crossing through the Great Amazon
Reef System as the sea level dropped. In contrast, during interglacial periods, it became
more permeable as the sea level rose, leading to the opening of the Great Amazon Reef
System and allowing species to cross (Rocha, 2003; Ludt & Rocha, 2015; Araujo et al., 2022).
Despite this, H. aurolineatum does not exhibit the typical genetic break seen in species like
Acanthurus chirurgus (Rocha et al., 2002),Haemulon plumierii and Citharichthys spilopterus
(De Jesus Gama-Maia et al., 2024).
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To explain the observed genetic homogeneity of the tomtate grunt, we considered three
possible scenarios. First, during interglacial periods, the increased sea levels may have
made the Amazon-Orinoco plume barrier more permeable (Rocha, 2003; Araujo et al.,
2022), allowing species like H. aurolineatum to cross, resulting in genetic homogeneity, as
has been explained for Opisthonema oglinum (Ferreira-Araújo et al., 2024), Selene stepannis
and H. aurolineatum (Araujo et al., 2022). Second, juveniles of H. aurolineatum, like other
species in the Haemulidae family, may use mangrove and estuarine habitats during their
life cycle (Castro-Aguirre, Pérez & Schmitter-Soto, 1999; Bravo, Eslava & González, 2009),
potentially facilitating the exchange of individuals between the Greater Caribbean and
Brazilian provinces. A similar pattern of connectivity across sandy and mangrove gaps has
been observed in Anisotremus interruptus in the Tropical Eastern Pacific (Palmerín-Serrano
et al., 2021). However, only two studies suggest that these species inhabit estuaries in
their early stages, while most evidence points to H. aurolineatum being strictly marine
(Darcy, 1983; Böhlke & Chaplin, 1993; Ornellas & Coutinho, 1998; Hoese & Moore, 1977;
Robertson et al., 2023). This may be attributed to the findings of Castro-Aguirre, Pérez &
Schmitter-Soto (1999) and Bravo, Eslava & González (2009), which report the presence of
juvenile specimens inmangrove ecosystems within coastal lagoons, particularly in estuarine
environments characterized by hypersalinity or negative salinity (Cervigón, 1986; Potter et
al., 2010; Tweedley et al., 2019; Lasso-Alcalá et al., 2023). Thirdly, a continuous distribution
and interchange of individuals through the Amazonian Coast plume may have occurred
(including the Amazon-Orinoco plume zone). This region is characterized by large positive
estuaries (Cervigón et al., 1992; Potter et al., 2010). This extends from the Orinoco River
Delta (Venezuela) through the Guianas (Guyana, Suriname, and French Guiana) to the
mouth of the Amazon River, and continues further east along the northern coast of Brazil,
spanning throughout the states of Pará, Maranhão, and Piauí, up to the Parnaiba River
Delta (see Fig. 1 and Fig. S1). This hypothesis is the most plausible, as data from the Global
Biodiversity Information Facility (GBIF, 2024) shows a continuous distribution of the
species (see Fig. S1). Notably, while H. aurolineatum is typically recorded in coastal reefs
across its distribution range, in the Amazonian Coast region, the species has been recorded
far from the coast and at more than 30–40 m deep (Lowe-McConnell, 1969; Collette &
Rützler, 1977; Uyeno, Matsuura & Fujii, 1983; Guéguen, 2000; Moura et al., 2016; Pinheiro
et al., 2018; Mrceniuk et al., 2021). These records from the Amazonian Coast region are
aligned with a large area of reef patches known as the Great Amazon Reef System, which
extends from eastern French Guiana to the north-eastern mouth of the Amazon River, off
the coasts of Amapá, Pará, and part of Maranhão states in Brazil (Rosemary & McConnell,
1962; Collette & Rützler, 1977; Francini-Filho et al., 2018; Mrceniuk et al., 2021; Carneiro
et al., 2022). This mesophotic reef (30–120 m depth), with its carbonate structures, acts
as a corridor for genetic connectivity of reef-associated species across a wide range of
depths (Cordeiro et al., 2015; Moura et al., 2016; De Mahiques et al., 2019; Banha et al.,
2022; Carneiro et al., 2022). This reef habitat bridge appears to enable gene connectivity
between H. aurolineatum populations in the Central-Southern Caribbean and Brazilian
provinces, avoiding the outflow of the Amazon-Orinoco plume, as has been suggested for
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Coryphopterus venezuelae and species of the Halichoeres genus (Rocha, 2003; Volk et al.,
2021).

Taxonomic implications
Phylogenetic studies of the Haemulidae family have revealed significant divergences
within H. aurolineatum, identifying two distinct lineages (Tavera et al., 2012; Tavera, Acero
& Wainwright, 2018). Taxonomically, two closely related species have been described:
Haemulon aurolineatum, based on type specimens collected in San Domingo, Brazil
(Cuvier, 1830), and Haemulon rimator, described from specimens collected in Charleston,
South Carolina, and Pensacola, Florida (Jordan & Swain, 1884). Haemulon rimator was
later considered a subspecies of H. aurolineatum by Ginsburg (1948) and subsequently
synonymized by Courtenay (1961). However, Castro-Aguirre, Pérez & Schmitter-Soto
(1999) treated it as a valid species. Most recently, Fricke, Eschmeyer & van der Laan (2024)
again regarded H. rimator as a synonym of H. aurolineatum. Our population genetic
analyses and species delimitation analyses confirm the presence of two well-differentiated
lineages along theWTA, with all posterior probability values in the tree species delimitation
analyses conducted of pp= 1−0.99, with p-D of 1.89% and a divergence event estimated to
have occurred around 0.8 Mya. One lineage is predominantly distributed in the northern
Caribbean, including samples near the known type locality ofH. rimator, while the other is
found mainly in the CSB-provinces, where H. aurolineatum was originally described (San
Domingo, Brazil). According to Castro-Aguirre, Pérez & Schmitter-Soto (1999), these two
species differ in the number of anal fin rays and coloration. They also noted differences in
distribution, with H. aurolineatum ranging from Massachusetts to Brazil and H. rimator
fromMassachusetts to the Gulf of Mexico—findings that align closely with the distribution
of the two lineages identified in this study. However, our species delimitation analyses
must be taken with caution, since these methods are sensitive to sample size (Carstens et al.,
2013). Accordingly, we recommend a comprehensive and integrative systematic analysis
of H. aurolineatum across its distribution range, incorporating both morphological and
genomic data at intra- and inter-regional spatial scales.

CONCLUSIONS
Our multi-locus study is the first to include samples from the entire distribution range of
H. aurolineatum, covering all biogeographic provinces proposed by Robertson & Cramer
(2014) and Brazilian province. This comprehensive approach provides valuable insights
into the evolutionary history ofH. aurolineatum across the WTA region. We identified two
distinct lineages within this species: one primarily distributed in the Northern Caribbean
and the other in theCentral, SouthernCaribbean andBrazilian provinces, with some genetic
mixing occurring in the northern part of the Central Caribbean and Florida. These lineages
likely diverged around 0.8 Mya, during Pleistocene, due to a combination of geological
and oceanographic factors. Furthermore, our study highlights the genetic homogeneity
observed among populations in the CSB-provinces, which may be facilitated by the
dispersal of organisms through the Amazon-Orinoco plume, aided by the Great Amazonas
Reef System acting as a corridor of gene connectivity. Taxonomically, the Northern
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lineage, previously proposed as a distinct species (H. rimator), has been synonymized with
H. aurolineatum, which appears to correspond to the CSB-provinces lineage identified in
this study. This highlights the need for a comprehensive integrative taxonomic study of
what is currently recognized as H. aurolineatum. Additionally, we recommend the use of
genomic data (RADseq) in order to assess the population patterns found in this study and
elucidate the systematics of H. aurolineatum.
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